Abstract

Data are being generated and used to support all aspects of healthcare provision, from policy formation to the delivery of primary care services. Particularly, with the change of emphasis from curative to preventive medicine, the importance of data-based research such as data mining and machine learning has emphasized the issues of class distributions in datasets. In typical predictive modeling, the inability to effectively address a class imbalance in a real-life dataset is an important shortcoming of the existing machine learning algorithms. Most algorithms assume a balanced class in their design, resulting in poor performance in predicting the minority target class. Ironically, the minority target class is usually the focus in predicting processes. The misclassification of the minority target class has resulted in serious consequences in detecting chronic diseases and detecting fraud and intrusion where positive cases are erroneously predicted as not positive. This paper presents a new attribute selection technique called variance ranking for handling imbalance class problems in a dataset. The results obtained were compared to two well-known attribute selection techniques: the Pearson correlation and information gain technique. This paper uses a novel similarity measurement technique ranked order similarity-ROS to evaluate the variance ranking attribute selection compared to the Pearson correlations and information gain. Further validation was carried out using three binary classifications: logistic regression, support vector machine, and decision tree. The proposed variance ranking and ranked order similarity techniques showed better results than the benchmarks. The ROS technique provided an excellent means of grading and measuring the similarities where other similarity measurement techniques were inadequate or not applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.