Abstract
Internet of things (IoT) has brought a greater transformation in healthcare sector thereby improving patient care, minimizing treatment costs. The present method employs classical mechanisms for extracting features and a regression model for prediction. These methods have failed to consider the pollution aspects involved during COVID 19 prediction. Utilizing Ensemble Deep Learning and Framingham Feature Extraction (FFE) techniques, a smart healthcare system is introduced for COVID-19 pandemic disease diagnosis. The Collected feature or data via predictive mechanisms to form pollution maps. Those maps are used to implement real-time countermeasures, such as storing the extracted data or feature in a Cloud server to minimize concentrations of air pollutants. Once integrated with patient management systems, this solution would minimize pollution emitted via patient’s sensors by offering spaces in the cloud server when pollution thresholds are reached. Second, the Gini Index factor information gain technique eliminates unimportant and redundant attributes while selecting the most relevant, reducing computing overhead and optimizing system performance. Finally, the COVID-19 disease prognosis ensemble deep learning-based classifier is constructed. Experimental analysis is planned to measure the prediction accuracy, error, precision and recall for different numbers of patients. Experimental results show that prediction accuracy is improved by 8%, error rate was reduced by 47% and prediction time is minimized by 36% compared to existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.