Abstract
Insider threat in cyberspace is a recurring problem since the user activities in a cyber network are often unpredictable. Most existing solutions are not flexible and adaptable to detect sudden change in user’s behaviour in streaming data, which led to a high false alarm rates and low detection rates. In this study, a model that is capable of adapting to the changing pattern in structured cyberspace data streams in order to detect malicious insider activities in cyberspace was proposed. The Computer Emergency Response Team (CERT) dataset was used as the data source in this study. Extracted features from the dataset were normalized using Min-Max normalization. Standard scaler techniques and mutual information gain technique were used to determine the best features for classification. A hybrid detection model was formulated using the synergism of Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) models. Model simulation was performed using python programming language. Performance evaluation was carried out by assessing and comparing the performance of the proposed model with a selected existing model using accuracy, precision and sensitivity as performance metrics. The result of the simulation showed that the developed model has an increase of 1.48% of detection accuracy, 4.21% of precision and 1.25% sensitivity over the existing model. This indicated that the developed hybrid approach was able to learn from sequences of user actions in a time and frequency domain and improves the detection rate of insider threats in cyberspace.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Communication Networks and Information Security (IJCNIS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.