ICP-CVD(inductively-coupled Plasma chemical vapor deposition)를 사용하여 $250^{\circ}C$ 기판온도에서 140 nm 두께의 수소화된 비정질 실리콘( ${\alpha}$ -Si:H)을 제조하였다. 그 위에 30 nm-Ni을 열증착기를 이용하여 성막하고, $200{\sim}500^{\circ}C$ 사이에서 $50^{\circ}C$ 간격으로 30분간 진공열처리하여 실리사이드화 처리하였다. 완성된 실리사이드의 처리온도에 따른 실리사이드의 면저항값 변화, 미세구조, 상 분석, 표면조도 변화를 각각 사점면저항측정기, HRXRD(high resolution X-ray diffraction), FE-SEM(field emission scanning electron microscope), TEM(transmission electron microscope), SPM(scanning probe microscope)을 활용하여 확인하였다. $300^{\circ}C$ 에는 고저항상인 $Ni_3Si$ , $400^{\circ}C$ 에서는 중저항상인 $Ni_2Si$ , $450^{\circ}C$ 이상에서 저저항의 나노급 두께의 균일한 NiSi를 확인되었다. SPM결과에서 저저항 상인 NiSi는 $450^{\circ}C$ 에서 RMS(root mean square) 표면조도 값도 12 nm이하로 전체 공정온도를 $450^{\circ}C$ 까지 낮추어 유리와 폴리머기판 등 저온기판에 대응하는 저온 니켈모노실리사이드 공정이 가능하였다. 【We fabricated hydrogenated amorphous silicon(a-Si:H) 140 nm thick film on a $180\;nm-SiO_2/Si$ substrate with an inductively-coupled plasma chemical vapor deposition(ICP-CVD) equipment at $250^{\circ}C$ . Moreover, 30 nm-Ni film was deposited with a thermal-evaporator sequently. Then the film stack was annealed to induce silicides by a rapid thermal annealer(RTA) at $200{\sim}500^{\circ}C$ in every $50^{\circ}C$ for 30 minuets. We employed a four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), and scanning probe microscope(SPM) in order to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure evolution, and surface roughness, respectively. We confirmed that nano-thick high resistive $Ni_3Si$ , mid-resistive $Ni_2Si$ , and low resistive NiSi phases were stable at the temperature of $350{\sim}450^{\circ}C$ , and > $450^{\circ}C$ , respectively. Through SPM analysis, we confirmed the surface roughness of nickel silicide was below 12 nm, which implied that it was superior over employing the glass and polymer substrates.】
Read full abstract