Abstract

ICP-CVD를 사용하여 수소화된 비정질 실리콘(a-Si:H)을 60 nm 또는 20 nm 두께로 성막 시키고, 그 위에 전자총증착장치(e-beam evaporator)를 이용하여 30 nm Ni 증착 후, 최종적으로 30 nm Ni/(60 또는 20 nm a-Si:H)/200 nm <TEX>$SiO_2$</TEX>/single-Si 구조의 시편을 만들고 <TEX>$200{\sim}500^{\circ}C$</TEX> 사이에서 <TEX>$50^{\circ}C$</TEX>간격으로 40초간 진공열처리를 실시하여 실리사이드화 처리하였다. 완성된 니켈실리사이드의 처리온도에 따른 면저항값, 상구조, 미세구조, 표면조도 변화를 각각 사점면저항측정기, HRXRD, FE-SEM과 TEM, SPM을 활용하여 확인하였다. 60 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 <TEX>$400^{\circ}C$</TEX>이후부터 저온공정이 가능한 면저항값을 보였다. 반면 20 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 <TEX>$300^{\circ}C$</TEX>이후부터 저온공정이 가능한 면저항값을 보였다. HRXRD 결과 60 nm 와 20 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 열처리온도에 따라서 동일한 상변화를 보였다. FE-SEM과 TEM 관찰결과, 60 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 저온에서 고저항의 미반응 실리콘이 잔류하고 60 nm 두께의 니켈실리사이드를 가지는 미세구조를 보였다. 20 nm a-Si:H 기판위에 형성되는 니켈실리사이드는 20 nm 두께의 균일한 결정질 실리사이드가 생성됨을 확인하였다. SPM 결과 모든 시편은 열처리온도가 증가하면서 RMS값이 증가하였고 특히 20 nm a-Si:H 기판 위에 생성된 니켈실리사이드는 <TEX>$300^{\circ}C$</TEX>에서 0.75 nm의 가장 낮은 RMS 값을 보였다. 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm <TEX>$SiO_2$</TEX>/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-<TEX>$SiO_2$</TEX>/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from <TEX>$200^{\circ}C$</TEX> to <TEX>$500^{\circ}C$</TEX> in <TEX>$50^{\circ}C$</TEX> increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from <TEX>$400^{\circ}C$</TEX> which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from <TEX>$300^{\circ}C$</TEX>. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at <TEX>$300^{\circ}C$</TEX>.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.