Gout is a disease caused by the deposition of monosodium urate (MSU) crystals in tissue such as cartilage, synovial membranes, bones and skin which causes inflammation in the synovial tissue. Indomethacin is first line of drug used as NSAID for the treatment of Gout. The aim of this study was to encapsulate Indomethacin in ethyl cellulose microspheres and compare the efficiency of the formulated Indomethacin microspheres with the Marketed formulation. Indomethacin microspheres were prepared by solvent evaporation method. FTIR studies revealed there was no significant interaction between the drug and polymer. Preformulation studies gave satisfactory results. SEM studies showed a spherical smooth microsphere average size of 10.4±3.04. The percentage entrapment efficiency and percentage drug release after 10 hours was found to be 82.97±1.6 % and 52.04±0.58 % respectively. The therapeutic effect of the Indomethacin microspheres was evaluated by the swelling of knee joints, joint range of motion and histologic analysis of MSU induced rat model. The prepared indomethacin microspheres showed effective prolong in the retention time of the drug in the intra articular cavity to 30 d which is more than that of the marketed formulation. Intra- articular injection of Indomethacin microspheres efficiently relieved inflammatory symptoms such as swelling index, joint range motion and suppressed inflammatory cell infiltration than the marketed formulation. Thus intra-articular injection of Indomethacin loaded microspheres proved to be a promising therapeutic method in the treatment of Gout. Keywords: Gout, indomethacin, ethyl cellulose, microspheres, inta-articular