This paper focuses on the wear resistance performance of Ni-SiC composite coatings with various contents of SiC particles. The coatings were characterized via a scanning electron microscope (SEM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM), and the wear behaviors of different coatings were tested. The results show that SiC particle incorporation results in a nanocrystalline metal matrix and nanotwins in nickel nanograins. The microhardness and wear resistance Ni-SiC composite coatings increased with the increasing SiC content. Microhardness was improved due to the grain-refinement strengthening effect and the presence of a nanotwin structure. The dominant wear mechanism was described in two stages: the first stage involves the interaction of SiC particles/the counter ball, and the second stage involves the formation of the oxide film its breaking up into wear debris. A higher SiC content increased the duration of the first stage and slowed down the rate of breaking up into debris, thereby decreasing the wear rate.
Read full abstract