Abstract

Organic-carbon-precursor-added B4C and B4C–SiC ceramics were subjected to pressureless sintering at various temperatures. The carbon precursor increased the densification of the B4C and B4C–SiC ceramics sintered at 2200 °C to 95.6 % and 99.1 % theoretical density (T.D.), respectively. The pyrolytic carbon content of the B4C–SiC composite decreased with increasing SiC content. The graphitization degree of pyrolytic carbon decreased slightly with the amount of carbon precursor and content of SiC. The 95 wt. % B4C–5 wt. % SiC composite added with 7.5 wt. % carbon precursor and sintered at 2200 °C outperformed the other B4C–SiC composites, and its sintered density, flexural strength, Young’s modulus, and microhardness were 98.6 % T.D., 879 MPa, 415 GPa, and 28.5 GPa, respectively. These values were higher than those of composites prepared via pressureless sintering and comparable to those of composites fabricated via hot pressing and/or using metal or oxide additives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call