Transfer printing is a critical procedure for manufacturing stretchable electronics. During such a procedure, stamps are utilized to transfer micro devices from silicon wafers to stretchable polymeric substrates. In addition to conventional silicone rubber stamps, epoxy resin based shape memory stamps have been developed and the transfer yield is thus significantly promoted. However, elastic modulus of the epoxy stamps is too high at both glassy and rubbery states, which may break the brittle micro devices during the adhesion process under mechanical pressure. In this work, we synthesized a copolymer of butyl acrylate (BA) and polycaprolactone diacrylate (PCLDA) as a soft reversible dry adhesive enabling a shape memory capability based on crystalline transition of polycaprolactone (PCL) segments. For the sample containing 40 wt% BA and 60 wt% PCLDA, Young’s modulus was 8.3 and 0.9 MPa respectively below and above the thermal transition temperature, which was much lower than that of the epoxy adhesive. On the other hand, the soft material still provided nearly ideal shape memory fixity and recovery ratios. Subsequently, shape memory surface with cone-shaped microstructure was prepared, which enabled a heating induced strong-to-weak adhesion transition when the microstructure recovered from a pressed temporary morphology to the permanent cone-shaped morphology. Such a soft reversible dry adhesive may contribute to large-scale and automated transfer printing processing.
Read full abstract