Abstract

A memristor is a nonlinear resistor with time memory. The resistance of a classical memristor at a given time is represented by the integration of all the full states before the time instant, a case of ideal memory without any loss. Recent studies show that there is a memory loss of the HP TiO2 linear model, in which the width of the doped layer of HP TiO2 model cannot be equal to zero or the whole width of the model. Based on this observation, a fractional-order HP TiO2 memristor model with the order between 0 and 1 is proposed, and the fingerprint analysis of the new fractional-order model under periodic external excitation is made, thus the formula for calculating the area of hysteresis loop is obtained. It is found that the shape and the area enclosed by the hysteresis loop depend on the order of the fractional-order derivative. Especially, for exciting frequency being bigger than 1, the memory strength of the memristor takes its maximal value when the order is a fractional number, not an integer. Then, the current-voltage characteristics of the simple series one-port circuit composed of the fractional-order memristor and the capacitor, or composed of the fractional-order memristor and the inductor are studied separately. Results demonstrate that at the periodic excitation, the memristor in the series circuits will have capacitive properties or inductive properties as the fractional order changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.