Abstract

900-nm Nd-doped fiber laser can find widespread applications including biomedical diagnosis, laser detection, and spectral analysis. The four-level gain competition of Nd<sup>3+</sup> around 1060 nm severely constrains the laser power scaling of the 900-nm three-level Nd-doped fiber laser. In this work, we propose a large-mode-area Nd-doped double-layer solid-core anti-resonant fiber with a core diameter of 27 μm for generating a high-power 900-nm laser based on the resonant and anti-resonant conditions of anti-resonant fiber. The transmission properties and mode profiles of the designed fiber are analyzed theoretically by using the full-vector finite-element method combined with an optimized mesh size. By introducing the double-layer anti-resonant elements into the active fiber and optimizing the fiber structure parameters and refractive index distribution, the high-order modes are well coupled with cladding modes. Finally, the designed fiber exhibits a confinement loss below 0.1 dB/m for fundamental mode and the confinement losses of all high-order modes are greater than 10 dB/m in 880–913 nm band. More importantly, around 1060 nm, the confinement losses of all modes can reach up to 100 dB/m, which enables the designed Nd-doped fiber to effectively suppress parasitic lasing and even amplified spontaneous emission. The Nd-doped solid-core anti-resonant fiber proposed in this study shows broad application prospects in the fields of 900-nm high-power fiber laser and amplifier. The developed chemical vapor deposition process combined with stack-and-draw technology can be adopted for the fabrication of the designed fiber. In order to ensure the optical performance of the anti-resonant fiber, it is necessary to accurately control the thickness of all anti-resonant tubes, the glass composition of the active core and background area in actual fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.