Abstract
The success of Case Based Reasoning (CBR) problem solving is mainly based on the recall process. The ideal CBR memory is one that simultaneously speeds up the retrieval step while improving the reuse of retrieved cases. In this paper, the authors present a novel associative memory model to perform the retrieval stage in a case based reasoning system. The described approach makes no prior assumption of a specific organization of the case memory, thus leading to a generic recall process. This is made possible by using Particle Swarm Optimization (PSO) to compute the neighborhood of a new problem, followed by direct access to the cases it contains. The fitness function of the PSO stage has a reuse semantic that combines similarity and adaptability as criteria for optimal case retrieval. The model was experimented on two proprietary databases and compared to the flat memory model for performance. The obtained results are very promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Software Science and Computational Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.