Esterification reactions are crucial in industries such as chemicals, fragrances, and pharmaceuticals but often face limitations due to high reversibility and low reactivity, leading to restricted yields. In this work, an electrified esterification pathway utilizing a Joule-heated interfacial catalysis (JIC) system is proposed, where a hydrophilic, sulfonic acid-functionalized covalent organic framework grown on carbon felt (COF─SO3H@CF) acts as the interfacial catalyst, and the carbon felt serves as the electric heat source. This approach achieves an acetic acid conversion of 80.5% at a heating power density of 0.49Wcm-3, without additional reagents by vaporizing reaction products, surpassing the theoretical equilibrium limit of 62.5% by 1.29 times. Comprehensive analysis indicates that the intimate contact between the electric heat source and the COF─SO3H catalyst enables efficient, localized Joule heating directly at catalytic sites, minimizing thermal losses and allowing precise control over reaction interfaces. This finding demonstrates that this JIC system not only enhances esterification efficiency but may also offer a sustainable, energy-efficient pathway for high-yield chemical processes.
Read full abstract