Abstract

Current thermally conductive and electrically insulating insulation systems are struggling to meet the needs of modern electronics due to increasing heat generation and power densities. Little research has focused on creating insulation systems that excel at both dissipating heat and withstanding high voltages (i.e., have both high thermal conductivity and a high breakdown strength). Herein, a polyelectrolyte-based multilayer nanocomposite is demonstrated to be a thermally conductive high-voltage insulation. Through inclusion of both boehmite and vermiculite clay, the breakdown strength of the nanocomposite was increased by ≈115%. It was also found that this unique nanocomposite has an increase in its breakdown strength, modulus, and hydrophobicity when exposed to elevated temperatures. This readily scalable insulation exhibits a remarkable combination of breakdown strength (250 kV/mm) and thermal conductivity (0.16 W m-1 K-1) for a polyelectrolyte-based nanocomposite. This dual clay insulation is a step toward meeting the needs of the next generation of high-performance insulation systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.