Abstract

A two-dimensional (2D) simple structured ultranarrow-band metamaterial perfect absorber (MPA) with nanocylindrical array is studied both theoretically and experimentally. Using a dielectric 2D cylindrical array as the top grating layer of the MPA, an ultranarrow nonpolarizing absorption peak at normal incidence is obtained. Furthermore, we use the same dielectric material to simplify the topology of the ultranarrow-band MPA, and the number of film layers in the MPA is reduced from 3 to 1. By optimizing its structural parameters and metal substrate, the highest ultranarrow nonpolarizing absorption peak that approaches 1 at normal incidence is obtained. To analyze the absorption physical mechanism, the heat power density distributions of the optimized MPA are simulated to see where the incident light is absorbed. Moreover, numerical simulation results show that the main transverse-electric absorption peak of the optimized MPA is insensitive to the incident angle, and the main transverse magnetic absorption peak is sensitive to the incident angle. Finally, we fabricate an MPA sample with dielectric nanocylindrical array and measure its absorption spectra to make a further comparison. The experimental data are consistent with the theoretical ones. This method might be helpful to reduce the manufacture difficulty and cost of the ultranarrow-band MPAs and also to promote the development of applications of the ultranarrow-band MPAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call