The Detective Generalized Multiscale Hybridizable Discontinuous Galerkin (Detective GMsHDG) method aims to further reduce the computational cost of the GMsHDG method. The GMsHDG method itself reduces the computational cost of the HDG method by employing an upscaled structure on a two-grid mesh. Given a PDE within a specified domain, we subdivide the domain into polygonal subdomains and transforms a HDG problem into globular and local problems. Globular problem concerns whether the solutions on smaller domains glue well to form a globular solution. The process involves generation of multiscale spaces, which is a vector space of functions defined on edges of the polygonal regions. A naive approximation by polynomials fails, especially in porous media, necessitating the generation of problem-specific spaces. The Detective GMsHDG method improves this process by replacing the generation of the multiscale space with the detective algorithm. The Detective GMsHDG method has two stages. First is called an offline stage. During the offline stage, we construct a detective function which, given a permeability distribution, it gives a multiscale space. Later stage is called the offline stage where, given the multiscale space, we use GMsHDG method to solve a given PDE numerically. We show numerical results to argue the liability of the solution using the detective GMsHDG method.
Read full abstract