Abstract

In our earlier work [8], we approximated solutions of a general class of scalar parabolic semilinear PDEs by an interpolatory hybridizable discontinuous Galerkin (Interpolatory HDG) method. This method reduces the computational cost compared to standard HDG since the HDG matrices are assembled once before the time integration. Interpolatory HDG also achieves optimal convergence rates; however, we did not observe superconvergence after an element-by-element postprocessing. In this work, we revisit the Interpolatory HDG method for reaction diffusion problems, and use the postprocessed approximate solution to evaluate the nonlinear term. We prove this simple change restores the superconvergence and keeps the computational advantages of the Interpolatory HDG method. We present numerical results to illustrate the convergence theory and the performance of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.