Abstract

Abstract In this article, we discuss error estimates for nonlinear parabolic problems using discontinuous Galerkin methods which include HDG method in the spatial direction while keeping time variable continuous. When piecewise polynomials of degree k ⩾ 1 are used to approximate both the potential as well as the flux, it is shown that the error estimate for the semi-discrete flux in L∞(0, T; L2)-norm is of order k + 1. With the help of a suitable post-processing of the semi-discrete potential, it is proved that the resulting post-processed potential converges with order of convergence $\begin{array}{} \displaystyle O\big(\!\sqrt{{}\log(T/h^2)}\,h^{k+2}\big) \end{array}$ in L∞(0, T; L2)-norm. These results extend the HDG analysis of Chabaud and Cockburn [Math. Comp. 81 (2012), 107–129] for the heat equation to non-linear parabolic problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.