Abstract
We use Monte Carlo, ensemble and hybrid discontinuous Galerkin method (EMC-HDG) to numerically solve parabolic partial differential equations (PDEs) with random coefficients. The proposed method reduces the computational cost and the storage requirement by solving multiple linear systems with a common coefficient matrix. Error analysis shows the proposed method is first-order accurate in time and optimal convergence order in physical space. In the end, several numerical experiments are presented to verify the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.