Abstract
We propose IMEX HDG-DG schemes for planar and spherical shallow water systems. Of interest is subcritical flow, where the speed of the gravity wave is faster than that of nonlinear advection. In order to simulate these flows efficiently, we split the governing system into a stiff part describing the gravity wave and a non-stiff part associated with nonlinear advection. The former is discretized implicitly with the HDG method while an explicit Runge-Kutta DG discretization is employed for the latter. The proposed IMEX HDG-DG framework: 1) facilitates high-order solutions both in time and space; 2) avoids overly small time-step sizes; 3) requires only one linear system solve per time stage; 4) relative to DG generates smaller and sparser linear systems while promoting further parallelism; and 5) suppresses the fast modes in the system with a large time-step size. Numerical results for various test cases demonstrate that our methods are beneficial for applications where non-stiff terms are accurately treated while stiff terms are less accurately handled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.