Abstract

In this work, we introduce a method to recover the reduced pressure for Reduced Order Models (ROMs) of incompressible flows. The pressure is obtained as the least-squares minimum of the residual of the reduced velocity with respect to a dual norm. We prove that this procedure provides a unique solution whenever the full-order pair of velocity-pressure spaces is inf-sup stable. We also prove that the proposed method is equivalent to solving the reduced mixed problem with reduced velocity basis enriched with the supremizers of the reduced pressure gradients. Optimal error estimates for the reduced pressure are obtained for general incompressible flow equations and specifically, for the transient Navier-Stokes equations. We also perform some numerical tests for the flow past a cylinder and the lid-driven cavity flow which confirm the theoretical expectations, and show an improved convergence with respect to other pressure recovery methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.