Research Article| July 02, 2019 A Seismic Moment Magnitude Scale Ranjit Das; Ranjit Das Corresponding Author aNational Research Center for Integrated Natural Disaster Management, Avenue Vicuña Mackenna 4860, Macul, La Florida, Región Metropolitana Santiago, Chile, ranjit244614@gmail.comeAlso at Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile. Search for other works by this author on: GSW Google Scholar Mukat Lal Sharma; Mukat Lal Sharma bEarthquake Engineering Department, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India Search for other works by this author on: GSW Google Scholar Hans Raj Wason; Hans Raj Wason bEarthquake Engineering Department, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India Search for other works by this author on: GSW Google Scholar Deepankar Choudhury; Deepankar Choudhury cDepartment of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India Search for other works by this author on: GSW Google Scholar Gabriel Gonzalez Gabriel Gonzalez dDepartamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, ChilefAlso at National Research Center for Integrated Natural Disaster Management, Avenue Vicuña Mackenna 4860, Macul, La Florida, Región Metropolitana Santiago, Chile. Search for other works by this author on: GSW Google Scholar Bulletin of the Seismological Society of America (2019) 109 (4): 1542–1555. https://doi.org/10.1785/0120180338 Article history first online: 02 Jul 2019 Cite View This Citation Add to Citation Manager Share Icon Share Twitter LinkedIn Tools Icon Tools Get Permissions Search Site Citation Ranjit Das, Mukat Lal Sharma, Hans Raj Wason, Deepankar Choudhury, Gabriel Gonzalez; A Seismic Moment Magnitude Scale. Bulletin of the Seismological Society of America 2019;; 109 (4): 1542–1555. doi: https://doi.org/10.1785/0120180338 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyBulletin of the Seismological Society of America Search Advanced Search Abstract The aim of obtaining a single scale for earthquake magnitudes has led many studies in the past to either develop relationships among various existing scales or develop an altogether new scale to represent a wide range of magnitudes on a single scale. Although a reliable and standardized estimation of earthquake size is a basic requirement for all tectonophysical and engineering applications, different magnitude scales estimate different values for the same earthquake, thereby making such studies inadequate. The moment magnitude (Mw) scale has been referred to by various researchers as the best scale, one that matches well with the observed surface‐wave magnitudes with Ms≥7.5 at a global level. The formulation and validation of the Mw scale were carried out considering the southern California region for lower and intermediate earthquakes.In this study, an endeavor has been made to extend the moment magnitude scale to include lower and intermediate magnitudes in a global context emphasizing the use of body waves, particularly P waves, in which data are abundant. We first investigate the degree of closeness of Mw values with other observed magnitudes (e.g., Ms and mb) for smaller and intermediate magnitude ranges considering global International Seismological Centre (ISC) and Global Centroid Moment Tensor (CMT) databases. To improve upon the consistency of the Mw scale for a wider range, a uniform generalized seismic moment magnitude scale Mwg=logM0/1.36−12.68, for magnitudes≥4.5, has been developed, considering 25,708 global earthquake events having mb and M0 values from ISC and Global CMT databases, respectively, during the period 1976–2006. The Mwg scale is also valid for 3.5≤mb≤7.0 because the relations between seismic moment and the magnitudes mb and Mwg are same.The greater accuracy of the Mwg scale over the Mw scale at different magnitudes (i.e., mb or Ms) is found to be statistically significant in the range including smaller and intermediate events. The similarity of the Mwg scale is also tested on 394 global seismic radiated energy values collected from Choy and Boatwright (1995). It is observed that 76% of estimated radiated energy values obtained through the Mwg scale show closer agreement (than with Mw) to the observed radiated energy values. Mwg is computed from low‐ and high‐frequency spectra, and because it is consistent for small, intermediate, and large earthquake events, it will play a useful role as an earthquake magnitude estimator for all earthquake related studies. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Read full abstract