Abstract

AbstractThe paper sets out a method for structural analysis of seismotectonic data using centroid moment tensors and associated hypocenters from the Global Centroid Moment Tensor project, here illustrated for aftershocks from the 2004 great Sumatran earthquake. We show that the Sumatran segments of the megathrust were subject to compression in a direction near to orthogonal with the margin trend, consistent with the effect of relative movement of the adjacent tectonic plates. In contrast, the crust above the Andaman Sea segments was subject to margin‐orthogonal extension, consistent with motion toward the gravitational potential well accumulated due to prior lateral (westward) rollback of the subducting edge of the northward moving Indian plate. Since this potential well is largely defined by topography, this episode of margin‐orthogonal extension is at least in part “gravity driven.” It did not last long. Within 15 months, an earthquake cluster across an Andaman Sea spreading segment showed a return to kinematics driven by relative plate motion. The transition can be explained if fluid activity temporarily reduced basal friction (or effective stress) but then led to healing so that the megathrust once again began to develop friction‐locked segments. The influence of slab rollback is in developing a gravitational potential well facing the megathrust, hence drawing the overriding crust toward it in the immediate postrupture phase while the megathrust is in a weakened state. Plate tectonics dominates during interseismic gaps, once the megathrust heals, and regains frictional resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call