The Logarithmic Mean Divisia Index (LMDI) method is widely applied in research on carbon emissions, urban energy consumption, and the building sector, and is useful for theoretical research and evaluation. The approach is especially beneficial for combating climate change and encouraging energy transitions. During the method’s development, there are opportunities to develop advanced formulas to improve the accuracy of studies, as indicated by past research, that have yet to be fully explored through experimentation. This study reviews previous research on the LMDI method in the context of building carbon emissions, offering a comprehensive overview of its application. It summarizes the technical foundations, applications, and evaluations of the LMDI method and analyzes the major research trends and common calculation methods used in the past 25 years in the LMDI-related field. Moreover, it reviews the use of the LMDI in the building sector, urban energy, and carbon emissions and discusses other methods, such as the Generalized Divisia Index Method (GDIM), Decision Making Trial and Evaluation Laboratory (DEMATEL), and Interpretive Structural Modeling (ISM) techniques. This study explores and compares the advantages and disadvantages of these methods and their use in the building sector to the LMDI. Finally, this paper concludes by highlighting future possibilities of the LMDI, suggesting how the LMDI can be integrated with other models for more comprehensive analysis. However, in current research, there is still a lack of an extensive study of the driving factors in low-carbon city development. The previous related studies often focused on single factors or specific domains without an interdisciplinary understanding of the interactions between factors. Moreover, traditional decomposition methods, such as the LMDI, face challenges in handling large-scale data and highly depend on data quality. Together with the estimation of kernel density and spatial correlation analysis, the enhanced LMDI method overcomes these drawbacks by offering a more comprehensive review of the drivers of energy usage and carbon emissions. Integrating machine learning and big data technologies can enhance data-processing capabilities and analytical accuracy, offering scientific policy recommendations and practical tools for low-carbon city development. Through particular case studies, this paper indicates the effectiveness of these approaches and proposes measures that include optimizing building design, enhancing energy efficiency, and refining energy-management procedures. These efforts aim to promote smart cities and achieve sustainable development goals.
Read full abstract