We consider the problem of constructing a vector-valued linear Markov process in continuous time, such that its first coordinate is in good agreement with given samples of the scalar autocorrelation function of an otherwise unknown stationary Gaussian process. This problem has intimate connections to the computation of a passive reduced model of a deterministic time-invariant linear system from given output data in the time domain. We construct the stochastic model in two steps. First, we employ the AAA algorithm to determine a rational function which interpolates the z-transform of the discrete data on the unit circle and use this function to assign the poles of the transfer function of the reduced model. Second, we choose the associated residues as the minimizers of a linear inequality constrained least squares problem which ensures the positivity of the transfer function’s real part for large frequencies. We apply this method to compute extended Markov models for stochastic processes obtained from generalized Langevin dynamics in statistical physics. Numerical examples demonstrate that the algorithm succeeds in determining passive reduced models and that the associated Markov processes provide an excellent match of the given data.