Abstract

In data-driven evolutionary optimization, most existing Gaussian processes (GPs)-assisted evolutionary algorithms (EAs) adopt stationary GPs (SGPs) as surrogate models, which might be insufficient for solving most optimization problems. This article finds that GPs in the optimization problems are nonstationary with great probability. We propose to employ a nonstationary GP (NSGP) surrogate model for data-driven evolutionary optimization, where the mean of the NSGP is allowed to vary with the decision variables, while its residue variance follows an SGP. In this article, the nonstationarity of GPs in the tested functions is theoretically analyzed. In addition, this article constructs an NSGP where the SGP is a degenerate case. Performance comparisons of the NSGP with the SGP and the NSGP-assisted EA (NSGP-MAEA) with the SGP-assisted EA (SGP-MAEA) are carried out on a set of benchmark problems and an antenna design problem. These comparison results demonstrate the competitiveness of the NSGP model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.