Abstract
We study the ergodic behaviour of a discrete-time process X which is a Markov chain in a stationary random environment. The laws of X_t are shown to converge to a limiting law in (weighted) total variation distance as trightarrow infty . Convergence speed is estimated, and an ergodic theorem is established for functionals of X. Our hypotheses on X combine the standard “drift” and “small set” conditions for geometrically ergodic Markov chains with conditions on the growth rate of a certain “maximal process” of the random environment. We are able to cover a wide range of models that have heretofore been intractable. In particular, our results are pertinent to difference equations modulated by a stationary (Gaussian) process. Such equations arise in applications such as discretized stochastic volatility models of mathematical finance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.