Abstract
In this paper, we quantify the rate of convergence between the distribution of number of zeros of random trigonometric polynomials (RTP) with i.i.d. centered random coefficients and the number of zeros of a stationary centered Gaussian process G, whose covariance function is given by the sinc function. First, we find the convergence of the RTP towards G in the Wasserstein-1 distance, which in turn is a consequence of Donsker Theorem. Then, we use this result to derive the rate of convergence between their respective number of zeros. Since the number of real zeros of the RTP is not a continuous function, we use the Kac-Rice formula to express it as the limit of an integral and, in this way, we approximate it by locally Lipschitz continuous functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.