In this paper, we construct a model of spinor fields interacting with specific gauge fields on the fuzzy sphere and analyze the chiral symmetry of this "Schwinger model". In constructing the theory of gauge fields interacting with spinors on the fuzzy sphere, we take the approach that the Dirac operator Dq on the q-deformed fuzzy sphere [Formula: see text] is the gauged Dirac operator on the fuzzy sphere. This introduces interaction between spinors and specific one-parameter family of gauge fields. We also show how to express the field strength for this gauge field in terms of the Dirac operators Dq and D alone. Using the path integral method, we have calculated the 2n-point functions of this model and show that, in general, they do not vanish, reflecting the chiral non-invariance of the partition function.