Abstract

Chiral antisymmetric tensor fields can have chiral couplings to quarks and leptons. Their kinetic terms do not mix different representations of the Lorentz symmetry and a local mass term can be forbidden by symmetry. The chiral couplings to the fermions are asymptotically free, opening interesting perspectives for a possible solution to the gauge hierarchy problem. We argue that the interacting theory for such fields can be consistently quantized, in contrast to the free theory which is plagued by unstable solutions. We suggest that at the scale where the chiral couplings grow large the electroweak symmetry is spontaneously broken and a mass term for the chiral tensors is generated nonperturbatively. Massive chiral tensors correspond to massive spin-one particles that do not have problems of stability. We also propose an equivalent formulation in terms of gauge fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.