Abstract

I consider the case of two interacting scalar fields, $\ensuremath{\phi}$ and $\ensuremath{\psi}$, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field which should be an improvement of the usual semiclassical procedure. As an application I use this method in order to enforce Gauss's law as a classical equation in a non-Abelian gauge theory. I argue that the theory is renormalizable and equivalent to the usual Yang-Mills theory as far as the gauge field terms are concerned. There are additional terms in the effective action that depend on the Lagrange multiplier field $\ensuremath{\lambda}$ that is used to enforce the constraint. These terms and their relation to the confining properties of the theory are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.