Abstract

A general coordinate invariant theory is constructed where confinement of gauge fields and gauge dynamics in general is governed by the spontaneous symmetry breaking (s.s.b.) of scale invariance. The model uses two measures of integration in the action, the standard [Formula: see text] where g is the determinant of the metric and another measure Φ independent of the metric. To implement scale invariance, a dilaton field is introduced. Using the first-order formalism, curvature (ΦR and [Formula: see text]) terms, gauge field term ([Formula: see text] and [Formula: see text]) and dilaton kinetic terms are introduced in a conformally invariant way. Exponential potentials for the dilaton break down (softly) the conformal invariance down to global scale invariance, which also suffers s.s.b. after integrating the equations of motion. The model has a well-defined flat space limit. As a result of the s.s.b. of scale invariance phases with different vacuum energy density appear. Inside the bags, that is in the regions of larger vacuum energy density, the gauge dynamics is normal, that is nonconfining, while for the region of smaller vacuum energy density, the gauge field dynamics is confining. Likewise, the dynamics of scalars, like would be Goldstone bosons, is suppressed inside the bags.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.