Abstract We report sub-parsec-scale observations of the 321 GHz H2O emission line in the radio galaxy NGC 1052. The H2O line emitter size is constrained in <0.6 mas distributed on the continuum core component. The brightness temperature exceeding 106 K and the intensity variation indicate certain evidence for maser emission. The maser spectrum consists of redshifted and blueshifted velocity components spanning ∼400 km s−1, separated by a local minimum around the systemic velocity of the galaxy. The spatial distribution of maser components shows a velocity gradient along the jet direction, implying that the population-inverted gas is driven by the jets interacting with the molecular torus. We identified a significant change of the maser spectra between two sessions separated by 14 days. The maser profile showed a radial velocity drift of 127 ± 13 km s−1 yr−1 implying inward gravitational acceleration at 5000 Schwarzschild radii. The results demonstrate the feasibility of future very long baseline interferometry observations to resolve the jet–torus interacting region.
Read full abstract