Abstract

The transmission device of the astronautic exploration vehicle can be regarded as an inclined beam experiencing axial motion under varying gravitational acceleration and tilt angle. Understanding the instability and vibration characteristics of this structure with axial movement is crucial for the dynamic design of the astronautic exploration vehicle. This paper discusses the stability and non-linear vibration nature of a self-weight inclined beam. The governing equations of the system are established and discretized using the hypothesized mode method and the extended Hamilton principle. The stability of the inclined beam is explored through an analysis of its natural frequency. The amplitude-frequency responses of the first four generalized coordinates of the inclined beam are analyzed by the Matcont toolkit. The influence of the axial velocity, the value of external excitation, the gravitational acceleration, and the tilt angle on the nonlinear vibration characteristics of the beam are discussed. Through the numerical discussion in this paper, a diverse range of nonlinear dynamic phenomena are observed and valuable insights for the stability design of the transmission device are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.