Abstract

This work presents a simple two-phase flow model to analyse a series of axisymmetric granular column collapse tests conducted under elevated gravitational accelerations. These columns were prepared with a just-saturated condition, where the granular pores were filled with a Newtonian fluid up to the column’s free surface. In this configuration, unlike the fully submerged case, air-water-grain contact angles may be important to flow dynamics. The interaction between a Newtonian fluid phase and a monodispersed inertial particle phase was captured by an inter-phase interaction term that considers the drag between the two phases as a function of the particle phase porosity. While this experimental setup has broad applications in understanding various industrial processes and natural phenomena, the focus of this study is on its relevance to predicting the motion of debris flows. Debris flows are challenging to model due to their temporally evolving composition, which can lead to the development of complex numerical models that become intractable. The developed numerical scheme in this study reasonably reproduces the particle-size and gravitational acceleration dependencies observed within the experimental runout and basal fluid pressure dissipation data. However, discrepancies between the model and physical experiments primarily arise from the assumption of modelling the granular phase as a continuum, which becomes less appropriate as particle size increases.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call