The functioning of isolated spinach (Spinacia oleracea L.) leaf mitochondria has been studied in the presence of metabolite concentrations similar to those that occur in the cytosol in vivo. From measurements of the concentration dependence of the oxidation of the main substrates, glycine and malate, we have concluded that the state 3 oxidation rate of these substrates in vivo is less than half of the maximal rates due to substrate limitation. Analogously, we conclude that under steady-state conditions of photosynthesis, the oxidation of cytosolic NADH by the mitochondria does not contribute to mitochondrial respiration. Measurements of mitochondrial respiration with glycine and malate as substrates and in the presence of a defined malate:oxaloacetate ratio indicated that about 25% of the NADH formed in vivo during the oxidation of these metabolites inside the mitochondria is oxidized by a malate-oxaloacetate shuttle to serve extramitochondrial processes, e.g. reduction of nitrate in the cytosol or of hydroxypyruvate in the peroxisomes. The analysis of the products of the oxidation of malate indicates that in the steady state of photosynthesis the activity of the tricarboxylic acid cycle is very low. Therefore, we have concluded that the mitochondrial oxidation of malate in illuminated leaves produces mainly citrate, which is converted via cytosolic aconitase and NADP-isocitrate dehydrogenase to yield 2-oxoglutarate as the precursor for the formation of glutamate and glutamine, which are the main products of photosynthetic nitrate assimilation.
Read full abstract