Ultrasound focusing and microbubble collapse are numerically investigated using a level-set interface tracking method for two-phase flows with multiple interfaces. The computations for ultrasound propagating through a spherical lens demonstrate the ultrasound refraction and pressure intensification at the rear of the lens. The focusing of the initial negative pressure wave through the lens induces a converging flow and the focusing of the subsequent positive pressure wave further intensifies the pressure at the lens. Computations are extended to bubble oscillations near the focusing lens and compared with the no-lens case. The lens not only amplifies the bubble expansion and contraction rates significantly but also generates a larger pressure gradient across the bubble. This ultrasound focusing effect contributes to the asymmetric collapse of the bubble and the formation of a liquid jet that penetrates the bubble. The effects of lens size, initial bubble radius and bubble-lens distance on bubble expansion and liquid jet are further investigated.