Abstract

Laser wireless power transmission (WPT) is one of the most important technologies in the field of long-range power transfer. This technique uses a laser as a transmission medium instead of conventional physical or electrical connections to perform WPT. It has the characteristics of long transmission distance and flexible operation. The existing laser wireless power transmission system uses photovoltaic cells as a receiver, which convert light into electricity. Due to the contradiction between the Gaussian distribution of laser and the uniform illumination requirements of photovoltaic cells, the laser wireless power transmission technology has problems such as low transmission efficiency and small output power. Therefore, understanding the energy distribution changes in the laser during transmission, especially the energy change after the laser is transmitted to each key device, and analyzing the influencing factors of the energy distribution state, are of great significance in improving the transmission efficiency and reducing the energy loss in the system. This article utilizes the optical software Lighttools as a tool to establish a laser wireless power transmission model based on a powersphere. This model is used to study the energy distribution changes in the laser as it passes through various components, and to analyze the corresponding influencing factors. To further validate the simulation results, an experimental platform was constructed using a semiconductor laser, beam expander, Fresnel lens, and powersphere as components. A beam quality analyzer was used to measure and analyze the laser energy distribution of each component except for the powersphere. The output voltage and current values of various regions of the powersphere were measured using a multimeter. The energy distribution of the powersphere was reflected based on the linear relationship between photo-generated current, voltage, and light intensity. The experimental results obtained were in good agreement with the simulation results. Simulations and experiments have shown that using a beam expander can reduce divergence angle and energy loss, while employing large-aperture focusing lens can enhance energy collection and output power, providing a basis for improving the efficiency of laser wireless power transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call