Experiments were conducted in this study to investigate the chocked cavitation characteristics and its oscillation mechanism in jet pump cavitation reactors (JPCR) under limited operation stage (LOS) utilizing a synchronous measurement system. The pulsation characteristics of cavitation in JPCR under various inlet and outlet pressures were analyzed by the processed high-speed camera images. Furthermore, correlation between cavitation and pressure pulsation as well as the mechanism of cavitation oscillation in JPCR under LOS are elucidated based on synchronized measurements. The results reveal that the typical jet choked cavitation flow field can be divided into three characteristic regions, i.e., stability region, oscillation region and collapse region. Changes in flow parameters cause variations in the areas of these three regions and shift the initial and collapse positions of cavitation. The time-averaged length of cavitation clouds varies linearly with the absolute pressure ratio at the outlet, corresponding to both stable and unstable LOS. Notably, the results reveal a clear correlation between the grayscale of cavitation clouds and pressure fluctuations over time, identifying the inverse pressure gradient as the primary cause of cavitation oscillation in the throat tube during unstable LOS.
Read full abstract