Surface unloading due to impact cratering results in lava filling the crater floor. Elevation differences in the crater floor, a common geological phenomenon on the Moon, represent direct evidence of cratering processes. However, few studies have been conducted on mare-filled craters on the Moon. Al-Biruni (81 km) is a farside impact crater with an inclined topographic profile on its floor. We quantitatively measure the morphology of Al-Biruni and model the basaltic lava emplacement to depict the cratering process. Differential subsidence due to melt cooling, wall collapse, impact conditions and structural failure were assessed as potential factors influencing the formation of the elevation differences on the floor. The results suggest that pre-impact topography is a plausible cause of the differences in floor elevation within Al-Biruni. Other factors may also play a role in this process, affecting lava flow by altering the topography of the crater floor after the impact. Thus, regardless of whether the lava inside the crater is impact-generated or comes from outside the crater, altering topography at different stages of the cratering process is an essential factor in creating the sloped terrain on the crater floor.
Read full abstract