Abstract

Flood damages occur when just one inch of water enters a residential household and models of flood damage estimation are sensitive to first-floor elevation (FFE). The current sources for FFEs consist of costly survey-based elevation certificates (ECs) or assumptions based on year built, foundation type, and flood zone. We sought to address these limitations by establishing the role of an Unmanned Aerial System (UAS) to efficiently derive accurate FFEs. Four residential communities within Galveston Island, Texas were selected to assess efficient flight parameters required for UAS photogrammetry within the built environment. A real-time kinematic positioning enabled (RTK) UAS was then used to gather georeferenced aerial imagery and create detailed 3D photogrammetric models with ±0.02 m horizontal and ±0.05 m vertical accuracies. From these residential models, FFEs and other structural measurements present in traditional ECs were obtained. Comparative statistical analyses were performed using the UAS-based measurements and traditional EC measurements. UAS based FFE measurements achieved 0.16 m mean absolute error (MAE) across all comparative observations and were not statistically different from traditional EC measures. We conclude the RTK enabled UAS approach is an efficient, cost-effective method in establishing accurate FFEs and other flood-sensitive measures in residential communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call