In this study, the results of the investigation of the influence of Al atoms on the structural characteristics of ZnO films obtained by the sol-gel method are presented. It has been determined that the glass substrates consist of subcrystallites with dimensions of 28.6 nm, having cubic unit cells with lattice parameters a = 0.3336 nm, and their surfaces belong to the crystallographic orientation (111). It has been identified that the grown thin ZnO films consist of subcrystallites with dimensions of 39.5 nm, having a wurtzite structure with lattice parameters a = b = 0.3265 nm and c = 0.5212 nm, respectively. It has been determined that at the boundaries of the division of these subcrystallites, polycrystalline regions with sizes of 12.6 nm, 28.3 nm, 30 nm, and 33 nm are formed. Additionally, nanocrystallites with sizes of 56.8 nm self-assemble on the surface areas of the deposited films. The increase in the values of the “c”axis of the hexagonal crystal lattice of ZnO films by 0.0009 nm when doping Al atoms from 1% to 5% is explained by the shift of the main structural line (002) at small angles (Δθ=0.12°). It has been established that nanocrystallites with lattice parameters аn = 0.5791 nm, belonging to the spatial group Fd3m, self-assemble on the surface areas of ZnO:Al films. the curve due to the presence of a monoenergetic level of fast surface states at the heterojunction.
Read full abstract