Abstract

The hematite films prepared by electrodeposition (ED) and hydrothermal (HT) methods have similar nanorods morphology and the same length. However, the hematite prepared by HT method has higher photocurrent density and negative shift of onset potential. The samples are systematically characterized by scanning electron microscopy, UV–Vis spectra, X-ray diffractometry and photoelectrochemical measurements. The results reveal that the enhanced photoelectrochemical (PEC) performance of HT hematite is attributed to the superior surface charge injection efficiency, which is caused by a slower surface recombination rate rather than a more catalytically active hematite surface. And the slower surface recombination rate can be attributed to the absence of the slow surface states CSS2. This work provides an in-depth understanding of the reasons for the different PEC performance of hematite photoanodes fabricated by ED and HT methods, which is of certain significance in guiding the modification of hematite photoanodes prepared by the two typical routes in PEC water splitting system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.