In this paper, an extended state observer (ESO)-based nonsingular fast terminal sliding mode (NFTSM) control method is proposed for the speed tracking system of permanent magnet synchronous motor (PMSM) in the present of unknown parameters and time-varying load. Firstly, three finite time convergence ESO (FTCESO) are employed to estimate the lumped disturbances in one speed loop and two current loops, respectively, and the estimates are fed forward to controllers for compensation. Secondly, a NFTSM controller is designed, which can drive the speed of PMSM track in desired speed in finite time. The stability of resulting closed-loop system is proved by using Lyapunov theory. Finally, the simulation and experimental results are compared with the existing methods, and the results show that the proposed method has better performance in tracking different kind of desired speed curves, and also performs better in reducing the chattering phenomenon.