Abstract

A continuous nonsingular fast terminal sliding mode (CNFTSM) control strategy with an automated double power reaching law is proposed to improve the performance of speed dynamic response and accuracy tracking for the permanent magnet synchronous motor (PMSM) servo system. In pursuit of robustness against system uncertainties, a finite-time convergent extended state observer (ESO) is designed to estimate external disturbances, parameter variation, and unmodeled dynamics as a feedforward compensation to the output feedback control system. The developed controller, based on Lyapunov stability theory analysis, can guarantee finite time stability from any initial state in the presence of internal and external disturbances. The modified sliding mode reaching law can achieve enough convergence rate compared with the exponential reaching law, and the inherent chattering of sliding mode is reduced when system states approach the equilibrium point. Theoretical analysis and simulation results demonstrate that the proposed composite controller can achieve higher performance than the conventional sliding mode method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call