Abstract

In this paper, a novel finite-time fault-tolerant trajectory tracking controller is created to render a marine vehicle to enhance tracking performance in the presence of complex unknown variables, including model uncertainties, environmental disturbances, and actuator faults. An adaptive fault-tolerant finite-time sliding mode controller is designed by introducing adaptive control techniques, the non-singular fast terminal sliding mode (NSFTSM) function, and a radial base function (RBF) neural network. The radial base function neural network (RBFNN) is developed to eliminate the influences of model uncertainties and environmental disturbances. A fault compensation by integrating the adaption technique is designed to reduce the effects of actuator faults and approximation errors. Suffering from uncertainties and actuator faults, the proposed finite-time tracking controller can track the desired trajectory with high precision. Simulation results and compared simulations indicate the efficiency and superiority of the proposed controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call