Abstract

This paper presents a disturbance-observer-based sliding mode control strategy for an underwater electro-hydrostatic actuator, particularly considering that electro-hydrostatic actuators (EHAs) significantly suffer from sea pressure disturbance, which makes it hard to achieve high-precision position control. Therefore, a nonlinear disturbance observer was designed to aim at the matched and mismatched disturbance caused by sea pressure disturbance. Then, a nonlinearities model for an underwater EHA was established, and a related non-singular fast terminal sliding mode (NFTSM) controller was designed by changing the conventional sliding mode surface to further improve the control accuracy. In addition, the backstepping tool was used to guarantee the robust stability of the entire three-order hydraulic dynamic system. Finally, a comparative simulation was conducted with different load forces in AMESim and Simulink, which effectively verified the high tracking performance of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.