Using atomistic computer simulations based on analytical potential and density-functional theory models, we study effects of ion irradiation on graphene. We identify the types and concentrations of defects which appear in graphene under impacts of various ions with energies ranging from tens of electron volts to mega-electron volts. For two-dimensional targets, defects beyond single and double vacancies are formed via in-plane recoils. We demonstrate that the conventional approach based on binary-collision approximation and stochastic algorithms developed for bulk solids cannot be applied to graphene and other low-dimensional systems. Finally, taking into account the gas-holding capacity of graphene, we suggest the use of graphene as the ultimate membrane for ion-beam analysis of gases and other volatile systems which cannot be put in the high vacuum required for the operation of ion beams.
Read full abstract