Gold nanoclusters (Au NCs), composed of only a few atoms, exhibit molecule-like behavior due to their distinct electronic structures arising from quantum confinement effects. Unlike their plasmonic nanoparticle counterparts, these nonplasmonic Au NCs possess unique properties with significant potential for photosensitizer applications. While traditional and NC-based electrodes share architectural similarities, the photoelectrochemical (PEC) behavior of the latter diverges significantly. Sensitizing TiO2 with Au NCs introduces additional surface trap states. In contrast to conventional photosensitizers, where surface states typically have a negligible impact on hole transfer, these trap states actively mediate the charge transfer process in Au NC-sensitized TiO2 electrodes. In this study, we employed impedance spectroscopy to elucidate the role of surface trap states in photocurrent generation. Our investigation revealed that these states are critical in determining PEC performance, presenting a dichotomy: they facilitate charge transfer (enhancing PEC performance) while simultaneously promoting carrier recombination (limiting efficiency). We demonstrated that the judicious control of otherwise deleterious surface trap states can significantly boost photocurrent. Our findings highlight that the dual nature of surface trap states demands a comprehensive investigation to fully understand their intricate impact on PEC performance.
Read full abstract