Abstract

Bismuth vanadate (BiVO4), as a promising photoanode for photoelectrochemical (PEC) water splitting, suffers from poor charge separation efficiency and light absorption efficiency. Herein, iron oxychloride (FeOCl) is introduced as a novel cocatalyst simply grafted on BiVO4 to construct an integrated photoanode, enhancing PEC performance. The optimized FeOCl/BiVO4 photoanode exhibits a superior photocurrent density value of 5.23mAcm-2 at 1.23V versus reversible hydrogen electrode (RHE) under AM 1.5G illuminations. From experimental analysis, such high PEC performance is ascribed to the unique properties of FeOCl, facilitating charge transport, increasing light absorption efficiency, and promoting water oxidation kinetics. Density functional theory calculations further confirm that FeOCl optimizes the Gibbs free energy of H and O-containing intermediates (OOH*) during PEC processes, boosting the catalytic kinetics of PEC water splitting. This work presents FeOCl as a promising catalyst for constructing high efficient PEC water-splitting photoanodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call